

ATIVIDADE PRÁTICA

DOSIMETRIA DAS RADIAÇÕES

OBJETIVOS

A proposta desta atividade prática está amparada nos seguintes objetivos:

- Verificar a influência na atenuação do feixe na dosimetria de um equipamento emissor de raios X, calculando a camada semirredutora do feixe de radiação.
- Aprender o processo de calibração de dosímetros individuais utilizados para fins de proteção radiológica.
- Verificar a influência na atenuação do feixe na dosimetria de um equipamento emissor de raios X, a partir da alteração da distância entre a fonte e o medidor de radiação.

RECURSOS

Computador com acesso à internet e ao ambiente virtual.

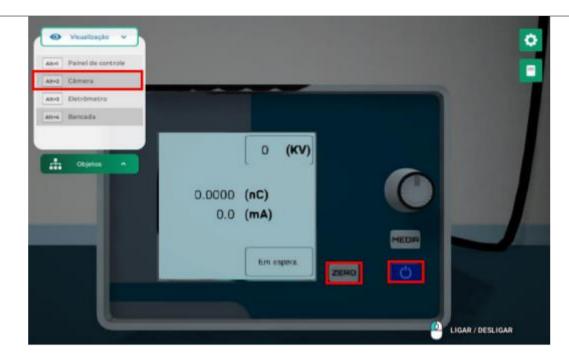
PROCEDIMENTOS PRÁTICOS

Atividade proposta 1 – Cálculo da Camada Semirredutora

Realizar o cálculo da camada semirredutora na atenuação do feixe de raio X.

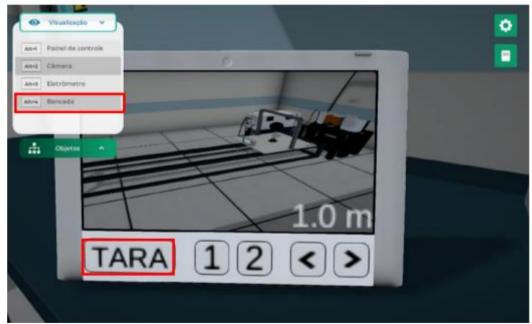
Procedimentos para a realização da atividade

- Os procedimentos serão realizados por meio do VirtuaLab Algetec.
- Acessar o laboratório virtual ALGETEC;
- Ao abrir a unidade, você deverá acessar o tópico "Experimento" > "Acesse o laboratório":

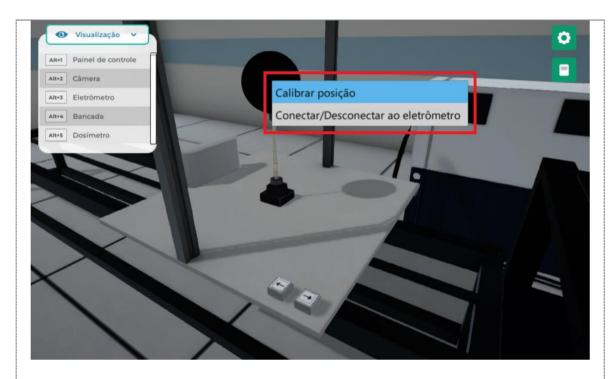


- Em seguida, você já será direcionado ao laboratório onde realizaremos o nosso primeiro procedimento.
 - 1. Iniciando o sistema: Ligue o painel de controle e o eletrômetro.

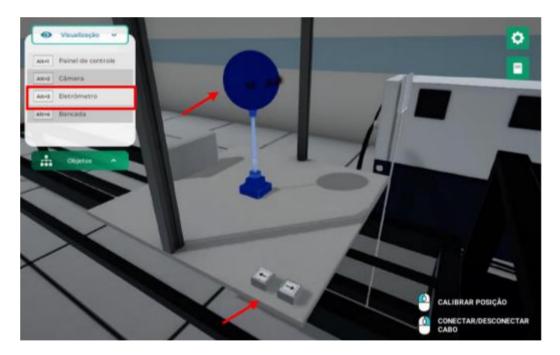
Com o botão esquerdo do mouse ligue o painel de comando, clicando na chave. No menu "VISUALIZAÇÃO", clique com o botão esquerdo do mouse sobre "ELETRÔMETRO".



Ligue o eletrômetro com o botão esquerdo do mouse. Em seguida, zere o aparelho clicando com o botão esquerdo do mouse em "ZERO".



2. Posicionamento da câmara de ionização: Posicione a câmara de ionização, conecte o cabo ao eletrômetro.

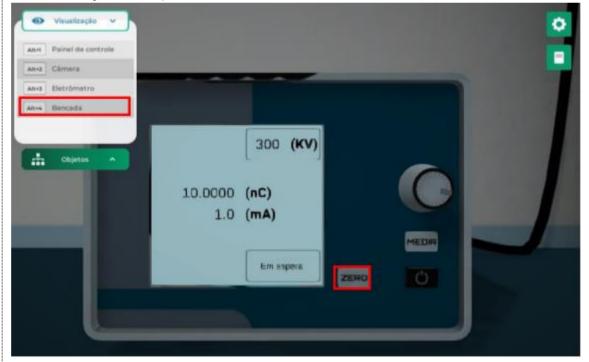

Vá para a menu de visualização e selecione a opção "CÂMERA". Aperte o botão "TARA" com o botão esquerdo do mouse, para posicionar a câmara de ionização no sistema de trilhos a 1,0 m de distância da fonte. Direcione-se ao menu "VISUALIZAÇÃO" e clique em "BANCADA".

Calibre a esfera. Para isso, com o botão direito do mouse, conecte o cabo entre a câmara e o eletrômetro "Conectar/Desconectar ao eletrômetro". Em seguida, com o botão direito do mouse, clique sobre a esfera para ativar a calibração "Calibrar posição".

Com o botão esquerdo do mouse clique nas setas para efetuar a calibração, observando a posição do feixe, o qual deve ser posicionado na horizontal. Direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO".

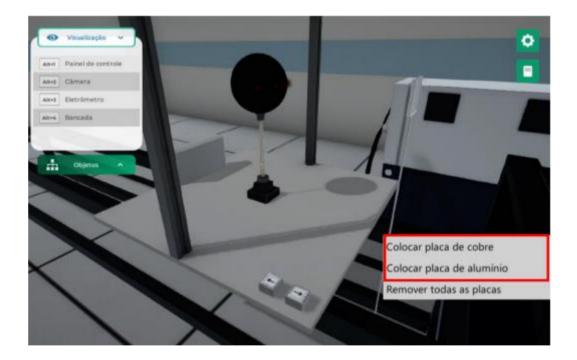
3. Polarização: Polarize a câmara de ionização, programe o painel de controle do raio-X, acione o feixe e anote o valore obtido.

Com o botão esquerdo do mouse gire o botão do eletrômetro a 300KV, em seguida clique em "MEDIR". Direcione-se ao menu "VISUALIZAÇÃO" e clique em "PAINEL DE CONTROLE".

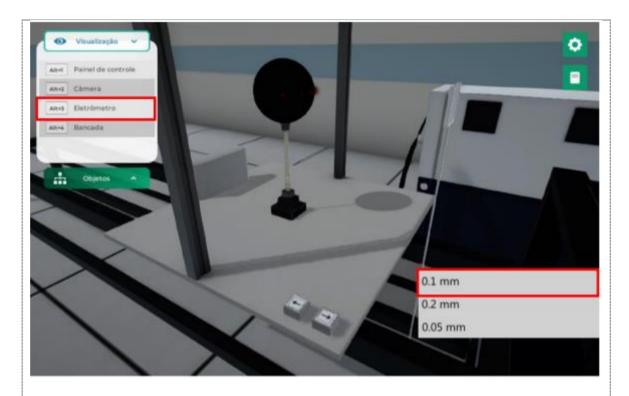

Com o botão esquerdo do mouse clique sobre os botões abaixo da tela, cada botão corresponde a um parâmetro, "60,0 kV" e "1 mA", além do tempo de irradiação para 10 segundos. Para efetuar a programação clique em cada número correspondente no painel numérico, e em seguida clique no "ENTER".

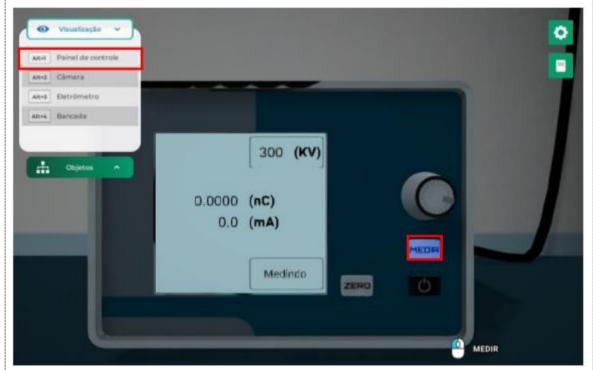
Posicione a chave de segurança na opção "ON", clicando com o botão esquerdo do mouse, e acione o botão verde ("SALA LIVRE"). Direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO".

Aguarde a medição. Anote o valor obtido, zere o eletrômetro clicando com o botão esquerdo do mouse no botão "ZERO", em seguida, direcione-se ao menu "VISUALIZAÇÃO" e clique em "BANCADA".



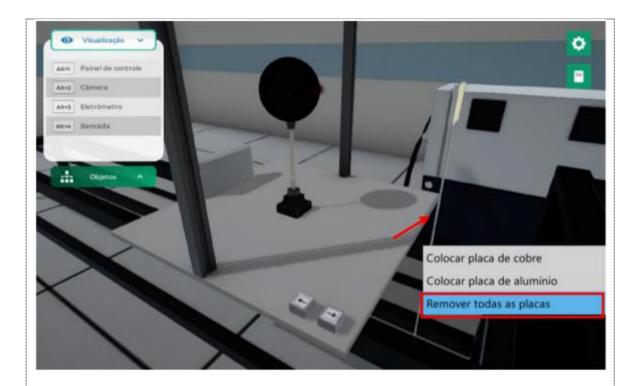
4. Analisando os atenuadores: Faça três exposições com os atenuadores de cobre e alumínio, com as espessuras definidas para cada um, e, anote os valores.

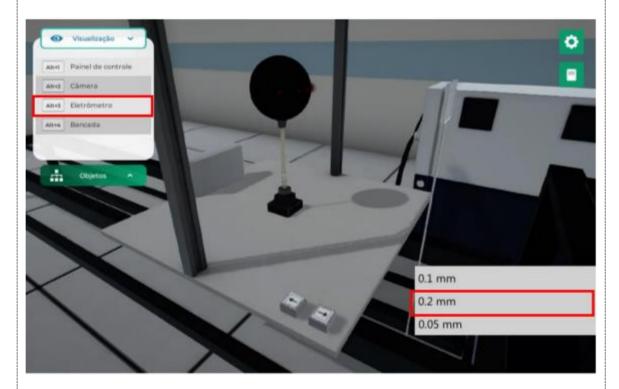

Com o botão direito do mouse clique na haste de fixação da placa atenuadora para "COLOCAR PLACA ATENUADORA".


Em seguida, com o botão esquerdo do mouse clique em "COLOCAR PLACA ATENUADORA DE COBRE" ou "COLOCAR PLACA ATENUADORA DE ALUMÍNIO".

Com o botão esquerdo do mouse, selecione a espessura a ser calculada, direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO"

Clique em "MEDIR" com o botão esquerdo do mouse, direcione-se ao menu "VISUALIZAÇÃO" e clique em "PAINEL DE CONTROLE".


Acione a emissão de raios com o botão esquerdo do mouse no botão "SALA LIVRE", e direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO".


Anote o valor obtido, zere o eletrômetro clicando com o botão esquerdo do mouse no botão "ZERO", em seguida, direcione-se ao menu "VISUALIZAÇÃO" e clique em "BANCADA"

Com o botão direito do mouse clique na haste de fixação da placa atenuadora para "COLOCAR PLACA ATENUADORA", e em seguida, com o botão esquerdo do mouse clique em "REMOVER TODAS PLACAS".

Em seguida, com o botão esquerdo do mouse clique em "COLOCAR PLACA ATENUADORA DE COBRE" ou "COLOCAR PLACA ATENUADORA DE ALUMÍNIO". Com o botão esquerdo do mouse, selecione a espessura a ser calculada e direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO".

Clique em "MEDIR" com o botão esquerdo do mouse, direcione-se ao menu "VISUALIZAÇÃO" e clique em "PAINEL DE CONTROLE".

Acione a emissão de raios com o botão esquerdo do mouse no botão "SALA LIVRE", e direcione-se ao menu "VISUALIZAÇÃO" e clique em "ELETRÔMETRO".

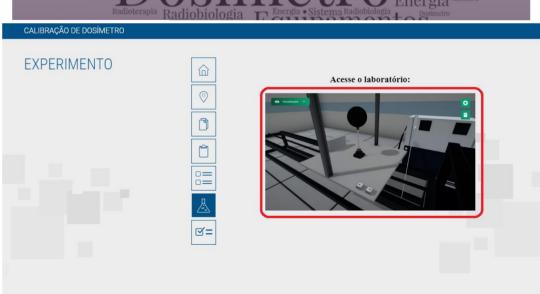
Anote o valor obtido, realize as exposições seguintes com as espessuras definidas conforme procedimento descrito no item 4.

5. Avaliando os resultados: Siga para a seção "Checklist", neste roteiro, e responda de acordo com o que foi observado na prática.

Checklist

- 1. Qual o objetivo dos atenuadores de cobre e alumínio?
- 2. A camada semirredutora pode ser medida sob quais condições específicas?

3. Cite exemplos práticos da aplicabilidade da camada semirredutora.

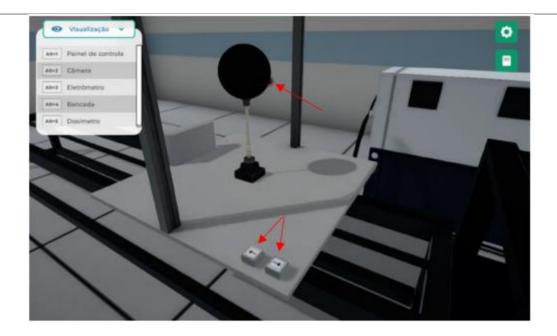

Atividade proposta 2 – Calibração de Dosímetro

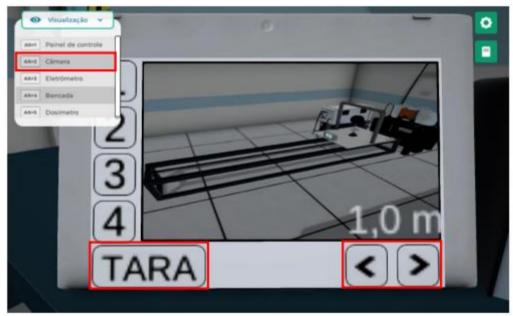
Realizar a calibração de dosímetros pessoais de leitura direta utilizados em proteção radiológica em uma fonte emissora de raios X.

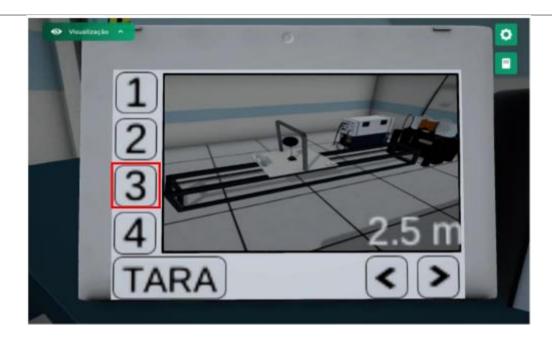
Procedimentos para a realização da atividade

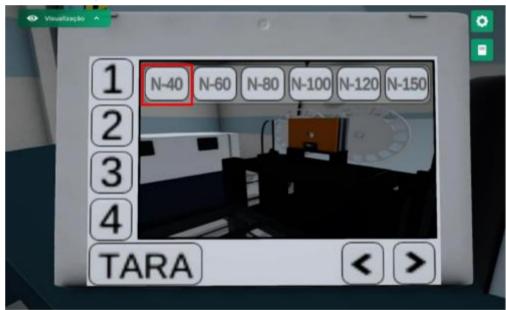
- Os procedimentos serão realizados por meio do VirtuaLab Algetec.
- Ao abrir a unidade, você deverá acessar o tópico "Experimento" > "Acesse o laboratório":

- Em seguida, você já será direcionado ao laboratório onde realizaremos o nosso segundo procedimento.
 - Ajustando a bancada: Conecte o cabo da câmara de ionização ao eletrômetro e calibre a posição da câmara, ajustando a sua posição de forma que o laser que incide sobre ela esteja na horizontal. Tare a câmera e altere a distância para 2,5 m. Selecione a qualidade ISO N-40.


Visualize a bancada, acessando a câmera "Bancada", clicando com o botão esquerdo do mouse sobre o menu lateral esquerdo.

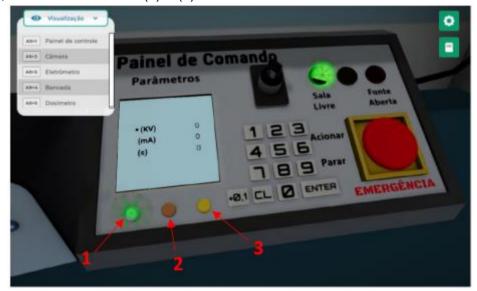

Conecte o cabo da câmara de ionização ao eletrômetro, clicando com o botão direito do mouse sobre a câmara e selecionando a opção "Conectar/desconectar ao eletrômetro".


Calibre a posição da câmara. Perceba que surgirá um laser incidindo sobre a câmara. Movimente a bancada, utilizando os botões de seta destacados na imagem abaixo, até que o laser esteja aproximadamente horizontal.


Visualize a câmera, alterando o modo de visualização para "Câmera". Tare a posição da bancada, clicando sobre o botão "Tara". Em seguida, altere a posição para 2,5 m, utilizando os botões de seta. Importante ressaltar que, após clicar em uma das setas, é necessário esperar que a bancada pare de se movimentar para clicar nas setas outra vez.

Altere a visualização para a tela 3 da câmera, clicando com o botão esquerdo do mouse sobre o botão 3 da câmera.

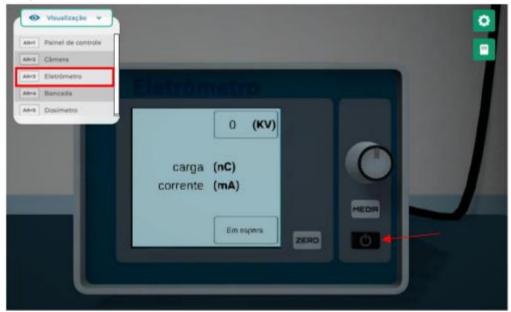
Selecione o parâmetro de qualidade ISO N-40, clicando com o botão esquerdo do mouse sobre o botão "N-40".



2. Configurando o painel de controle: Coloque o painel de controle em standby e configure-o com os valores adequados para a qualidade utilizada. Ligue e configure o eletrômetro em 300 kV, zere-o e selecione a função "Medir". Ligue o painel de controle e acione a emissão. Verifique os valores exibidos no display do eletrômetro.

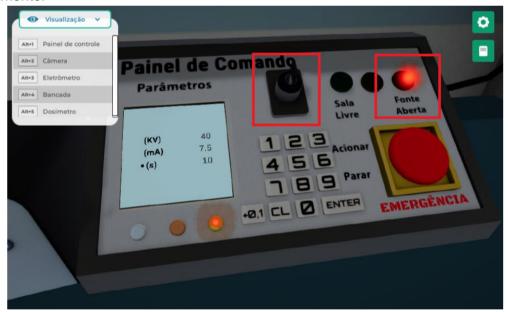
Altere o modo de visualização para "Painel de controle". Coloque o painel em standby, clicando com o botão esquerdo do mouse sobre a chave que está encaixada no painel.

Configure o painel com os valores adequados para a qualidade N-40. Para alterar o primeiro valor, clique com o botão esquerdo do mouse sobre o botão indicado (1) e utilize o teclado numérico do painel para digitar o valor desejado. Em seguida, mude os outros valores, clicando nos botões (2) e (3).


Segue a tabela de valores para configuração do painel de controle:

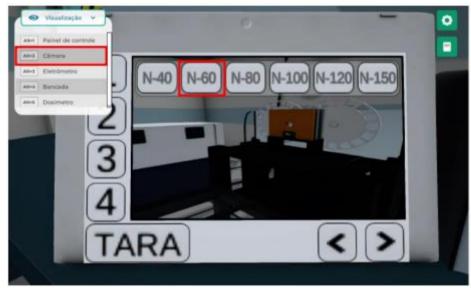
Qualidade ISO	N-40	N-60	N-80	N-100	N-120	N-150
Tensão (Kv)	40	60	80	100	120	150
Corrente (mA)	7,5	9,9	10,8	10,7	10,3	9,9
Tempo (s)	10	10	10	10	10	10

Após alterar todos os valores, pressione o botão "Enter" do teclado do painel.


Altere o modo de visualização para "Eletrômetro". Ligue o equipamento, clicando no botão "Ligar" com o botão esquerdo do mouse.

Pressione e arraste o mouse para girar o botão indicado na imagem abaixo, até que o valor seja 300 kV. Em seguida, clique sobre os botões "Zero" e "Medir"

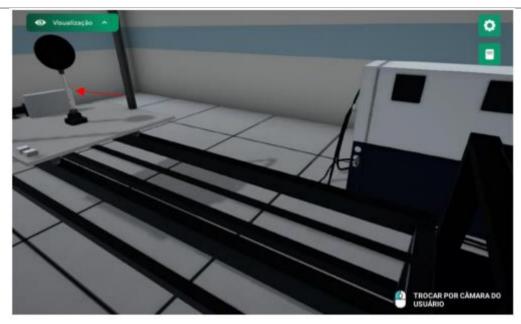
No menu "Visualização" clique em "Painel de Controle". Ligue o painel de controle, girando a chave para a posição "On". Para realizar essa ação, clique sobre a chave com o botão esquerdo do mouse. Pressione o botão verde "Sala livre" para acionar a emissão, clicando sobre ele. Perceba que o botão verde se apagará e o botão vermelho "Fonte aberta" se acenderá por alguns instantes. Aguarde até que o botão verde se acenda novamente.



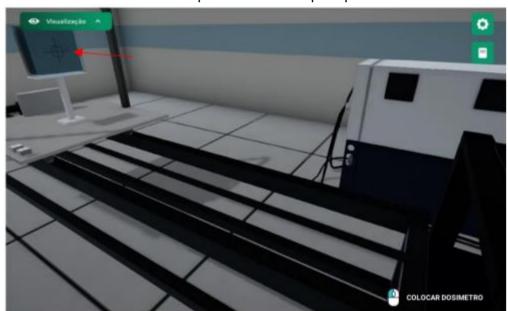
Visualize os valores exibidos no display do eletrômetro. Visualização > Eletrômetro.

3. Repetindo com outros parâmetros: Altere o parâmetro de qualidade para N-60 e repita os procedimentos do passo 2. Faça isso para todos os parâmetros de qualidade disponíveis.

Altere o modo de visualização para "Câmera". Na tela 3, altere o parâmetro de qualidade para ISO N-60, clicando sobre o botão "N-60".



Repita os procedimentos do passo 2, configurando o painel de controle com os valores para a qualidade N-60 e zerando o eletrômetro.


Faça esse procedimento para todos os outros parâmetros de qualidade disponíveis na tela 3 da câmera.

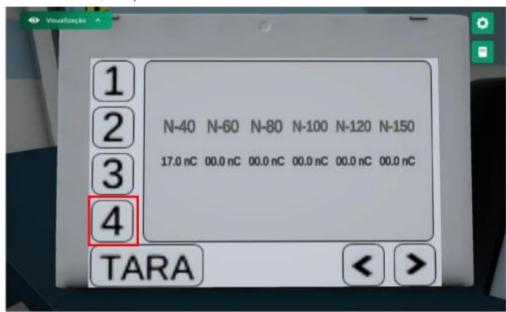
4. Lendo o dosímetro: Troque a câmara de ionização pelo fantoma e coloque o dosímetro nele. Selecione o parâmetro de qualidade N-40. Configure o painel de controle com os valores adequados para a qualidade utilizada, ligue-o e acione a emissão. Leia o dosímetro e verifique o valor exibido na tela 4 da câmera.

No menu Visualização, selecione "Bancada". Troque a câmara de ionização pelo fantoma, clicando com o botão esquerdo do mouse sobre o suporte da câmara.

Clique no fantoma com o botão esquerdo do mouse para posicionar o dosímetro.

Na tela 3 da câmera, altere o parâmetro de qualidade para N-40.

Configure o painel de controle com os valores corretos para N-40 e acione a emissão.



No menu Visualização, selecione o "Dosímetro". Para ler o dosímetro, clique com o botão esquerdo do mouse sobre o equipamento.

Para verificar o resultado, acesse a tela 4 da câmera. Anote os resultados obtidos.

5. Avaliando os resultados: Altere o parâmetro de qualidade para N-60 e repita os procedimentos do passo 4 e anote todos os valores obtidos. Faça isso para todos os parâmetros de qualidade disponíveis. Siga para a seção "Checklist", neste roteiro, e responda de acordo com o que foi observado nos experimentos.

Checklist

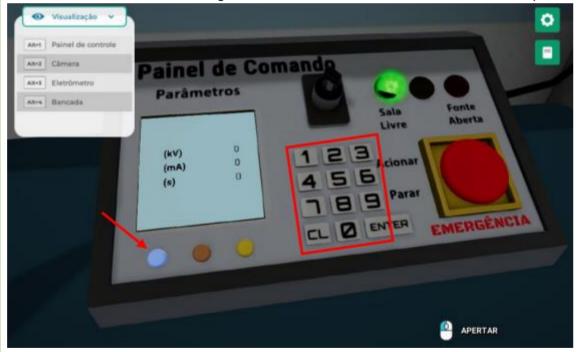
- Realizar a leitura do dosímetro para todos os parâmetros de qualidade disponíveis e analisar a diferença na leitura.
- 2. Com base nos seus conhecimentos, como você explica o princípio de funcionamento do dosímetro?

Atividade proposta 3 – Influência da Atenuação do Feixe

Verificar como a intensidade do feixe de radiação varia quando alteramos a distância entre o tubo de raios X e o detector de radiação.

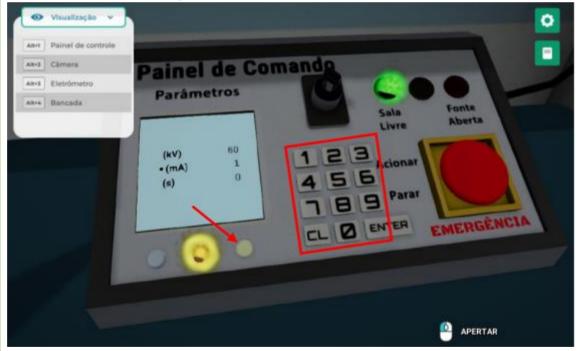
Procedimentos para a realização da atividade

- Os procedimentos serão realizados por meio do VirtuaLab Algetec.
- Ao abrir a unidade, você deverá acessar o tópico "Experimento" > "Acesse o laboratório":



- Em seguida, você já será direcionado ao laboratório onde realizaremos o nosso terceiro procedimento.
 - 1. Ajustando o painel de controle: Ligue o painel de controle, mantendo a chave de segurança na posição "Stand By". Configure os parâmetros do painel de controle em 60 kV, 1 mA e 10 s.

Ligue o painel de controle clicando com o botão esquerdo do mouse sobre a chave de segurança.

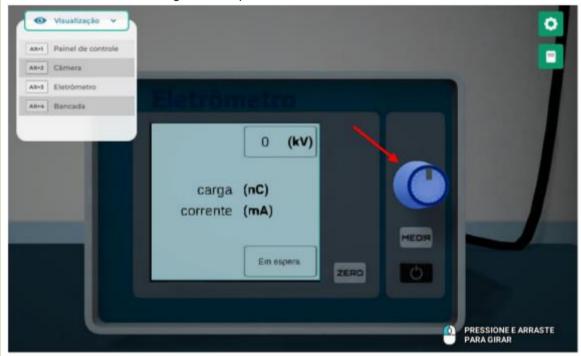

Digite o valor da voltagem necessária (60 kV) clicando com o botão esquerdo do mouse sobre o botão indicado e, em seguida, clicando sobre os números no teclado do painel.

Digite o valor da intensidade da corrente elétrica necessária (1 mA) clicando com o botão esquerdo do mouse sobre o botão indicado e, em seguida, clicando sobre os números no teclado do painel.

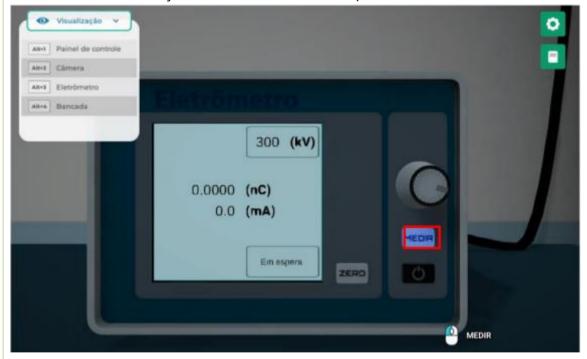
Digite o valor do tempo necessário (10 s) clicando com o botão esquerdo do mouse sobre o botão indicado e, em seguida, clicando sobre os números no teclado do painel.

Confirme os parâmetros preenchidos clicando com o botão esquerdo do mouse sobre o botão "Enter" do painel de controle.

2. Ajustando o eletrômetro: Ligue o eletrômetro e ajuste a voltagem para 300 kV. Em seguida, zere o equipamento e acione o modo de medição.

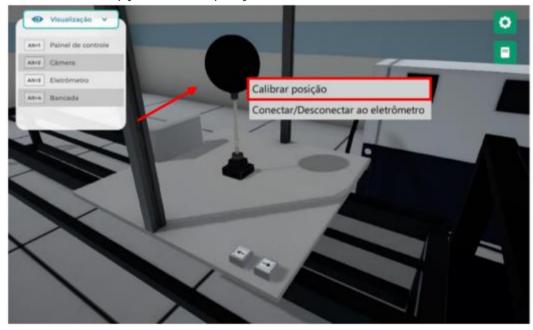

Visualize o eletrômetro clicando com o botão esquerdo do mouse na câmera com o nome "Eletrômetro" localizada dentro do painel de visualização no canto superior esquerdo da tela. Se preferir, também pode ser utilizado o atalho do teclado "Alt+3".

Ligue o equipamento clicando com o botão esquerdo do mouse sobre o botão indicado.


Ajuste a voltagem do eletrômetro para 300 kV pressionando o botão esquerdo do mouse sobre o botão indicado e girando-o para a direita.

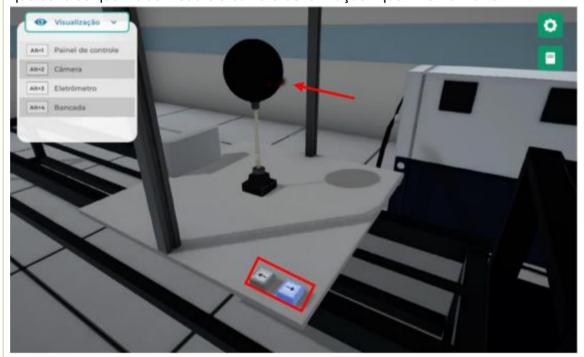
Zere o equipamento clicando com o botão esquerdo do mouse no botão "Zero".

Acione o modo de medição clicando com o botão esquerdo do mouse no botão "Medir".

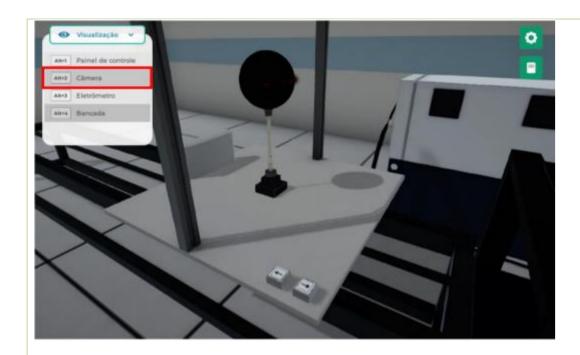


 Configurando a bancada: Calibre a posição da câmara e conecte seu cabo ao eletrômetro. Ajuste a sua posição de modo que o laser de calibração fique na horizontal.

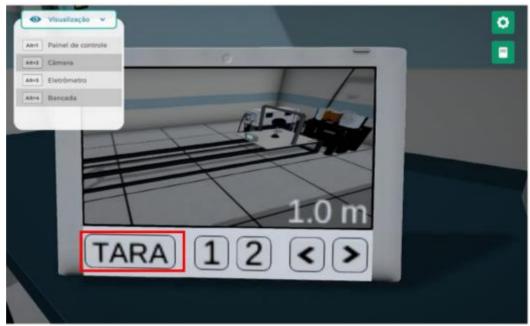
Visualize a bancada clicando com o botão esquerdo do mouse na câmera com o nome "Bancada" ou através do atalho do teclado "Alt+4".


Calibre a posição clicando com o botão direito do mouse sobre a câmera de ionização e selecionando a opção "Calibrar posição".

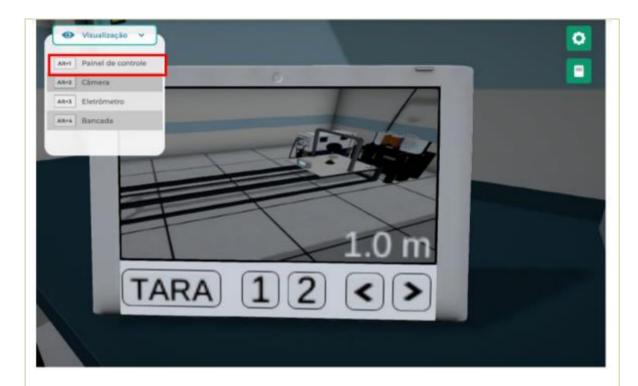
Conecte os cabos clicando com o botão direito do mouse sobre a câmera de ionização e selecionando a opção "Conectar/Desconectar ao eletrômetro".



Configure a posição da bancada clicando com o botão esquerdo do mouse nas setas até que os raios que incidem sobre a câmara de ionização figuem na horizontal.



4. Realizando o experimento: Na câmera, tare. Logo depois, posicione a chave de segurança na opção "ON" e acionar no botão "sala livre" para acionar a emissão. Faça a leitura do resultado no visor do eletrômetro.


Visualize a câmera clicando com o botão esquerdo do mouse na câmera com o nome "Câmera" ou através do atalho do teclado "Alt+2".

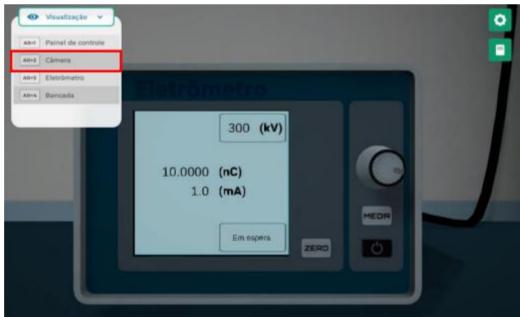
Tare clicando com o botão esquerdo do mouse no botão "Tara".

Visualize o painel de controle clicando com o botão esquerdo do mouse na câmera com o nome "Painel de controle" ou através do atalho do teclado "Alt+1".

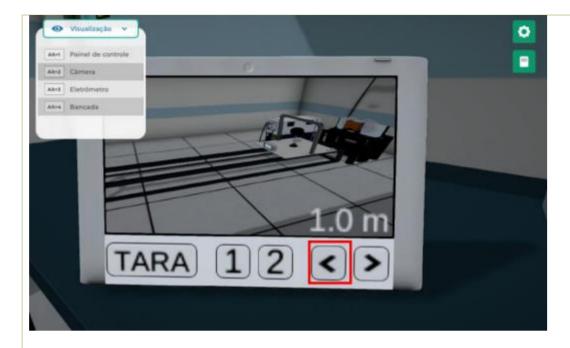
Posicione a chave de segurança na opção "ON" clicando com o botão esquerdo do mouse na chave.

Acione o botão "Sala livre" clicando com o botão esquerdo do mouse no respectivo botão.

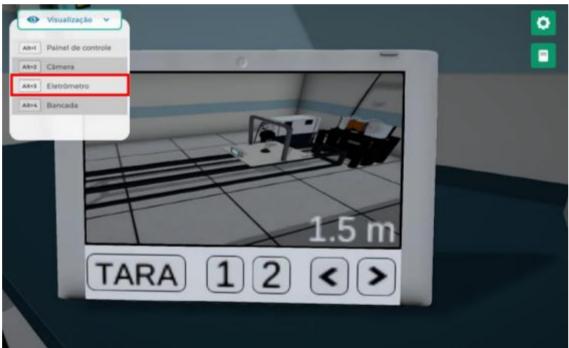
Após o botão "Sala livre" acender novamente, visualize o eletrômetro clicando com o botão esquerdo do mouse na câmera com o nome "Eletrômetro" ou através do atalho do teclado "Alt+3".

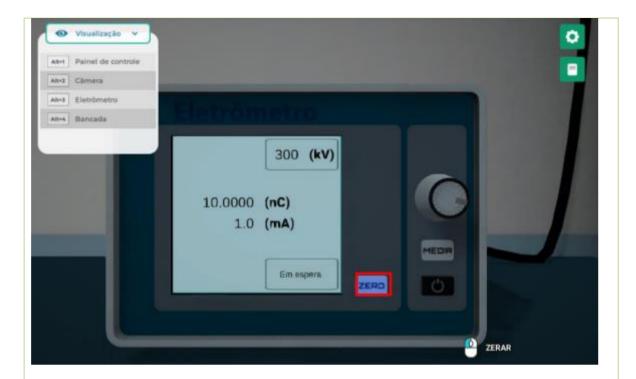


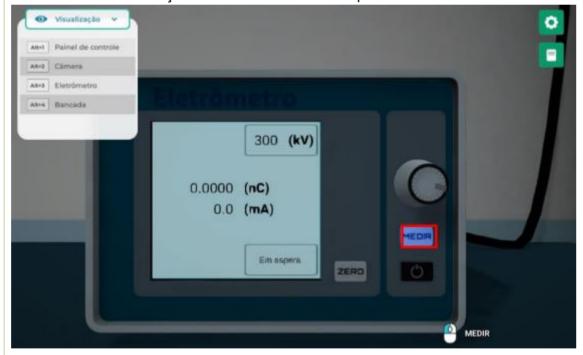
Verifique o resultado no display do eletrômetro.

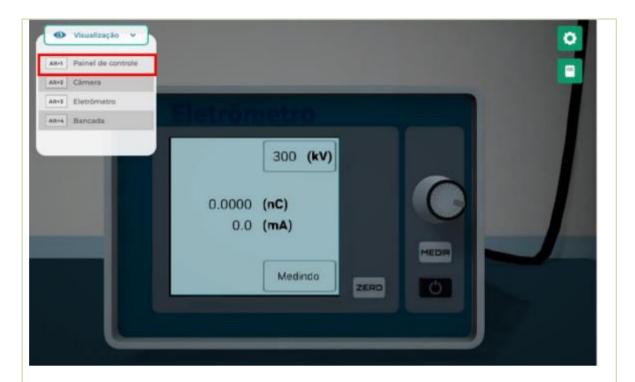


5. Alterando as distâncias: Na câmera, aumente a distância em 0.5 m. Zere o eletrômetro, ative novamente a função "Medir" e mais uma vez acione a emissão. Realize a leitura no visor do eletrômetro. Esse procedimento deve ser realizado 4 vezes (até alcançar a distância de 3,0 m).


Visualize a câmera clicando com o botão esquerdo do mouse na câmera com o nome "Câmera" ou através do atalho do teclado "Alt+2".

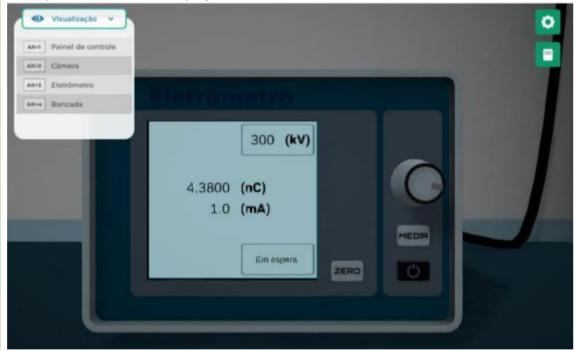

Aumente a distância em 0,5 m clicando com o botão esquerdo do mouse na seta que aponta para a esquerda.


Visualize o eletrômetro clicando com o botão esquerdo do mouse na câmera com o nome "Eletrômetro" ou através do atalho do teclado "Alt+3".


Zere o equipamento clicando com o botão esquerdo do mouse no botão "Zero".

Acione o modo de medição clicando com o botão esquerdo do mouse no botão "Medir".

Visualize o painel de controle clicando com o botão esquerdo do mouse na câmera com o nome "Painel de controle" ou através do atalho do teclado "Alt+1".


Acione o botão "Sala livre" clicando com o botão esquerdo do mouse no respectivo botão.

Após o botão "Sala livre" acender novamente, visualize o eletrômetro clicando com o botão esquerdo do mouse na câmera com o nome "Eletrômetro" ou através do atalho do teclado "Alt+3".

Verifique o resultado no display do eletrômetro.

Esse procedimento deverá ser repetido mais 3 vezes. Aumente a distância em 0,5m a cada repetição até chegar à distância de 3m. Lembre-se sempre de zerar o eletrômetro e colocar no modo de medição.

- **6. Finalizando o experimento:** Após concluir a prática, desconecte o cabo da câmera de ionização clicando com o botão direito do mouse sobre a câmera de ionização e selecionando a opção "Conectar/Desconectar ao eletrômetro".
- **7. Avaliando os resultados:** Siga para a seção "Checklist", neste roteiro, e responda de acordo com o que foi observado na prática.

Checklist

- 1. Qual a função do eletrômetro no sistema de medição?
- 2. Qual a importância de ajustar a bancada de modo que a radiação fique posicionada na horizontal?

RESULTADOS

Entrega de um arquivo word que contemple todas as etapas da atividade prática (Atividades 1, 2 e 3), respondendo à todas as questões propostas no checklist.